others

----------
$\frac{1}{\pi} = \frac{\sqrt{8}}{99^2} \sum_{n=0}^{\infty} \frac{(4n)!}{(4^n n!)^4} \frac{1103+26390n}{99^{4n}} $ (Ramanujan)
----------
 
$\frac{1}{\pi}=\frac{1}{3528}\sum_{n=0}^{\infty}\frac{(-1)^n(4n)!(1123+21460n)}{(n!)^4(14112^{2n})}$ (Ramanujan)
----------

$\frac{1}{\pi}=\frac{12}{\sqrt{640320^3}}\sum_{n=0}^{\infty}\frac{(-1)^n(6n)!(13591409+545140134n)}{(3n)!(n!)^3(640320^{3n})}$ (Chudnovsky)